Publications
-
Borel conjecture for the Marczewski ideal
Jörg Brendle and Wolfgang Wohofsky
Proc. Amer. Math. Soc., 152:5395-5410, 2024
doi:10.1090/proc/16981
-
Refining systems of mad families
Vera Fischer, Marlene Koelbing, and Wolfgang Wohofsky
Israel J. Math., 262(1):191-234, 2024
doi:10.1007/s11856-024-2626-9
-
Fresh function spectra
Vera Fischer, Marlene Koelbing, and Wolfgang Wohofsky
Ann. Pure Appl. Logic, 174(9):Paper No. 103300, 31, 2023
doi:10.1016/j.apal.2023.103300
-
Games on base matrices
Vera Fischer, Marlene Koelbing, and Wolfgang Wohofsky
Notre Dame J. Form. Log., 64(2):247-251, 2023
doi:10.1215/00294527-10701451
-
Towers, mad families, and unboundedness
Vera Fischer, Marlene Koelbing, and Wolfgang Wohofsky
Arch. Math. Logic, 62(5-6):811-830, 2023
doi:10.1007/s00153-023-00861-x
-
Laver trees in the generalized Baire space
Yurii Khomskii, Marlene Koelbing, Giorgio Laguzzi, and Wolfgang Wohofsky
Israel J. Math., 255(2):599-620, 2023
doi:10.1007/s11856-022-2465-5
-
Ideal topologies in higher descriptive set theory
Peter Holy, Marlene Koelbing, Philipp Schlicht, and Wolfgang Wohofsky
Ann. Pure Appl. Logic, 173(4):Paper No. 103061, 36, 2022
doi:10.1016/j.apal.2021.103061
-
A Sacks amoeba preserving distributivity of P(ω)/fin
Otmar Spinas and Wolfgang Wohofsky
Fund. Math., 254(3):261-303, 2021
doi:10.4064/fm961-9-2020
-
Borel conjecture, dual Borel conjecture, and other variants of the Borel conjecture
Wolfgang Wohofsky
In Centenary of the Borel conjecture, volume 755 of Contemp. Math., pages 135-227. Amer. Math. Soc., [Providence], RI, [2020] © 2020
doi:10.1090/conm/755/15216
-
Cofinalities of Marczewski-like ideals
Jörg Brendle, Yurii Khomskii, and Wolfgang Wohofsky
Colloq. Math., 150(2):269-279, 2017
doi:10.4064/cm7113-5-2017
-
Strong measure zero in separable metric spaces and Polish groups
Michael Hrušák, Wolfgang Wohofsky, and Ondřej Zindulka
Arch. Math. Logic, 55(1-2):105-131, 2016
doi:10.1007/s00153-015-0459-2
-
There are no very meager sets in the model in which both the Borel conjecture and the dual Borel conjecture are true
Saharon Shelah and Wolfgang Wohofsky
MLQ Math. Log. Q., 62(4-5):434-438, 2016
doi:10.1002/malq.201600002
-
Borel conjecture and dual Borel conjecture
Martin Goldstern, Jakob Kellner, Saharon Shelah, and Wolfgang Wohofsky
Trans. Amer. Math. Soc., 366(1):245-307, 2014
doi:10.1090/S0002-9947-2013-05783-2
Finished my PhD on October 7th 2013
The title of my thesis is "Special sets of real numbers and variants of the Borel Conjecture".
On Monday, October 7th 2013, I had my PhD defense.
Borel Conjecture and dual Borel Conjecture
Together with Martin Goldstern, Jakob Kellner and Saharon Shelah, I have worked on the
joint paper "Borel Conjecture and dual Borel Conjecture".
We show the consistency of "Borel Conjecture + dual Borel Conjecture", i.e., the existence of a model of ZFC in which
there is neither an uncountable strong measure zero set nor an uncountable strongly meager set.
Here is a link to "Borel Conjecture and Dual Borel Conjecture" on arXiv.
"Small subsets of the real line and generalizations of the Borel Conjecture"
From 2010 to 2011, I was recipient of the DOC fellowship of the Austrian Academy of Sciences.
I had to prepare a poster on the occasion of the fellowship award ceremony taking place in February 2010.
You can view or download large versions
of my poster either
top